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ARTICLE INFO ABSTRACT

Keywords: We recently reported identification of sarcoplasmic/endoplasmic reticulum calcium-ATPase2a (SERCA2a) 971-
Autoreactive T cells 990, which induces atrial myocarditis by generating autoreactive T cells in A/J mice. However, it was unknown
Self-ant(iigens how antigen-sensitized T cells could recognize SERCA2a 971-990, since SERCA2a-expression is confined to an
Myocarditis

intracellular compartment. In this report, we present evidence that antigen-presenting cells (APCs) from lym-
Mouse model phoid and non-lymphoid organs in naive animals present SERCA2a 971-990 and stimulate antigen-specific T
APCs cells. Using major histocompatibility complex (MHC) class II dextramers for SERCA2a 971-990, we created a
T cells and SERCA2a panel of T cell hybridomas and demonstrated that splenocytes from naive A/J mice stimulated the hybridoma
cells without exogenous supplementation of SERCA2a 971-990. We then recapitulated this phenomenon by
using SERCA2a 971-990 -specific primary T cells, verifying that the T cell responses were MHC-restricted.
Furthermore, SERCA2a 971-990 -sensitzed T cells exposed to APCs from naive mice were found to produce the
inflammatory cytokines interferon-y, granulocyte macrophage colony stimulating factor, and interleukin-17A,
which are implicated in the induction of myocarditis. Finally, while T cells exposed to mononuclear cells (MNCs)
obtained from heart and liver also responded similarly to splenocytes, endothelial cells (ECs) generated from the
corresponding organs displayed opposing effects, in that the proliferative responses were suppressed with the
heart ECs, but not with the liver ECs. Taken together, our data suggest that the surface expression of SERCA2a
971-990 by naive APCs can potentially trigger pathogenic autoreactive T cell responses under conditions of
autoimmunity, which may have implications in endothelial dysfunction.
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1. Introduction

Autoimmune diseases can result from autoreactive T cells or B cells
or both, but detection of autoreactive cells in healthy individuals does
not mean that clinical manifestations would ensue in their lifetime. It is
well established that developing T and B lymphocytes are expected to
recognize self-antigens during maturation processes in their generative
organs, thymus and bone marrow, respectively, prior to their export to
the periphery. Because weakly recognized lymphocytes are allowed to
exit the primary organs as a result of positive selection, detection of
autoreactive cells in the periphery would not be surprising
(Theofilopoulos et al., 2017). Yet, most individuals remain healthy, and
how such a tolerance can be maintained is a fundamental question in
autoimmunity research.

Mechanistically, various theories have been proposed to suggest
that self-tolerance can be broken in genetically susceptible individuals
under altered environmental conditions, which may include both exo-
genous (e.g., exposure to microbial infections) and endogenous (e.g.,
defects in the maturation processes, faulty regulation) factors
(Theofilopoulos et al., 2017; Cheng and Anderson, 2018). It is widely
believed that the frequencies of antigen-specific lymphocytes are in the
rangeof 1in 1 x 10°to 1 x 10° cells in healthy individuals (Goodnow
et al., 2005). Despite such low frequencies, upon exposure to microbial
infections, lymphocytes faithfully respond to foreign antigens, which is
one of the cardinal features of adaptive immune cells. By contrast,
autoreactive lymphocytes, although present in similar frequencies, are
not expected to react to self-antigens (Lohse et al., 1996; Alanio et al.,
2010; Steinert et al., 2012; Vrisekoop et al., 2017), even though they
continuously see the antigens. Whether this continuous exposure is a
critical requirement for self-reactive lymphocytes to become tolerant in
the periphery is not clear. In support of this proposition, however,
transgenic expression of self-antigens has been shown to promote tol-
erance (Skowronski et al., 1990; French et al., 1997; Bridgett et al.,
1998). Conversely, it has been held that either autoreactive cells re-
cognizing self-antigens undergo apoptosis or such recognition can be
suppressed by the mediation of regulatory T cells (Theofilopoulos et al.,
2017; Sakaguchi et al., 1995).

Experimentally, use of animal models has enhanced our under-
standing of how self-tolerance can be broken, leading to the induction
of pathogenic responses. We have been engaged in determining the role
of antigen-specific T cells in the causation of organ-specific diseases, in
particular, heart (Krishnan et al., 2017; Krishnan et al., 2018;
Basavalingappa et al., 2016; Basavalingappa et al., 2017; Gangaplara
et al., 2012). This work led us to identify at least three intracellular
proteins — adenine nucleotide translocator (Basavalingappa et al.,
2016), branched chain a-ketoacid dehydrogenase kinase (Krishnan
et al.,, 2017), and sarcoplasmic/endoplasmic reticulum calcium-AT-
Pase2a (SERCA2a) (Krishnan et al., 2018) — as autoimmune targets in
the development of myocarditis/dilated cardiomyopathy in myo-
carditis-susceptible, A/J mice. SERCA2a is unique in that it contains at
least six immunodominant T cell epitopes. One of these, SERCA2a 971-
990, can bind two major histocompatibility complex (MHC) class II
alleles (IA* and IEX) with varied affinities and induce mainly atrial
myocarditis by generating antigen-specific T cells that can transfer
disease to naive animals (Krishnan et al., 2018). While preferential
induction of myocardial lesions in the atria could be correlated with
enhanced expression of SERCA2a in the atria rather than the ventricles
(Krishnan et al., 2018), it was unknown whether SERCA2a peptide can
be displayed by the naive antigen-presenting cells (APCs) to trigger
autoreactive T cell responses. To address this question, we generated
SERCA2a 971-990 -specific T cell hybridomas and demonstrated that
hybridoma cells respond to SERCA2a 971-990 when stimulated by
splenocytes from naive mice without exogenous supplementation of
peptide. While we confirmed these findings with primary T cells spe-
cific to SERCA2a 971-990, we unexpectedly noted that the endothelial
cells (ECs) derived from hearts and livers from naive mice modulated
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SERCA2a 971-990 -reactive T cell responses differentially, which may
have implications in our understanding of endothelial dysfunction that
might occur in vascular inflammation and coronary heart diseases.

2. Materials and methods
2.1. Mice

Male A/J mice (6- to 8-wk-old, H-2%) obtained from the Jackson
Laboratory (Bar Harbor, ME) were maintained in accordance with the
Institutional Animal Care and Use Committee guidelines, University of
Nebraska-Lincoln, Lincoln, NE. Euthanasia was performed using carbon
dioxide as recommended by the Panel on Euthanasia, American
Veterinary Medical Association.

2.2. Peptide synthesis

SERCA2a 971-990 (Ac-KISLPVILMDETLKFVARNY), bovine ribonu-
clease (RNase) 43-56 (VNTFVHESLADVQA), and moth cytochrome C
(MCQ) 82-103 (FAGLKKANERADLIAYLKQATK) (GenScript,
Piscataway, NJ) were synthesized by 9-fluorenylmethyloxycarbonyl
chemistry. The purity of peptides was more than 90 % as evaluated by
high-performance liquid chromatography, and their identities were
confirmed by mass spectroscopy. Peptides dissolved in ultra-pure water
were aliquoted and stored at —20 °C until further use.

2.3. Immunization procedures, and generation of primary T cell cultures

On days 0 and 7, animals were immunized subcutaneously in the
inguinal and sternum regions with emulsions of SERCA2a 971-990 (50
ug/animal) prepared in complete Freund’s adjuvant containing
Mycobacterium tuberculosis H37RA extract (5 mg/ml; Difco
Laboratories, Detroit, MI, USA) (Cihakova et al., 2008; Massilamany
et al., 2016). At termination on day 21 post-immunization, single cell
suspensions were prepared from the draining lymph nodes. Cells were
stimulated with SERCA2a 971-990 (20 pg/ml) at a density of 5 x 10°
cells/ml for 2 days in growth medium (RPMI medium supplemented
with 10 % fetal bovine serum [FBS], 1 mM sodium pyruvate, 4 mM L-
glutamine, 1x each of non-essential amino acids and vitamin mixture,
and 100 U/ml penicillin-streptomycin [Lonza, Walkersville, MD, USA])
(Massilamany et al., 2016), and growth medium containing interleukin
(IL)-2 was then added. Cells were then stimulated 3—-4 times with
SERCA2a 971-990 as above, using syngeneic APCs.

2.4. Creation of MHC class II/IA* or IE* dextramers and dextramer staining

We recently reported the generation of MHC dextramers, more
sensitive reagents than tetramers, and used them to detect antigen-
specific T cells in a variety of experimental systems (Krishnan et al.,
2017; Krishnan et al., 2018; Basavalingappa et al., 2017; Massilamany
et al.,, 2015; Massilamany et al., 2011a; Massilamany et al., 2011b;
Gangaplara et al., 2013). We also had demonstrated their utility in
generating T cell hybridomas for the central nervous system antigen
proteolipid protein (PLP) 139-151 (Krishnan et al., 2015). We adopted a
similar approach to create SERCA2a 971-990 -specific T cell hy-
bridomas. Essentially, A/J mice express two MHC class II alleles: IA¥
and IEX (Basavalingappa et al., 2017). We generated two sets of MHC
class II dextramers, with one set each for IA¥ (SERCA2a 971-990 /RNase
43-56) and IEX (SERCA2a 971-990 /MCC 82-103), where RNase 43-56
and MCC 82-103 were used as controls for IAX and IEX molecules, re-
spectively (Krishnan et al., 2018). The sequences for all the above were
covalently tethered to the B chains of the corresponding MHC class II
alleles. In brief, a and B constructs of IAX and IEX molecules were ex-
pressed in baculovirus in Sf9 insect cells. After affinity-column pur-
ifications using anti-IA* and anti-IE* antibodies, soluble IA*/SERCA2a
971-990 and RNase 43-56, as well as IEX/SERCA2a 971-990 and MCC
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82-103 monomers, were biotinylated, and dextramers were derived
using streptavidin (SA)/fluorophore-conjugated dextran molecules as
we have described previously (Massilamany et al., 2011b). For dex-
tramer staining, cells were stained with IA*- (SERCA2a 971-990 and
RNase 43-56) or IEk-(SERCAZa 971-990 and MCC 82-103) dextramers,
followed by anti-CD4 FITC (Fluorescein isothiocyanate) and 7-ami-
noactinomycin-D (7-AAD). After washing, cells were acquired by flow
cytometry, and the percent dextramer™ cells were analyzed using
FlowJo software (Tree Star, Ashland, OR, USA) (Massilamany et al.,
2011b; Massilamany et al., 2011c; Reddy et al., 2003).

2.5. Derivation of T cell hybridomas specific to SERCA2a 971-990

By using MHC class II dextramers as screening and sorting tools, we
generated a panel of 92 T cell hybridoma clones as we have described
previously (Krishnan et al., 2015), and we selected one clone (80-P8-8-
E2), designated hereafter, clone 80 for further characterization. While,
antigen-specificity of this clone was determined based on dextramer
staining as described above (Krishnan et al., 2015), expression of var-
ious markers was analyzed by standard flow cytometry.

2.6. Intracellular cytokine staining

T cell hybridomas were briefly stimulated for 4-5 hours with an
activation cocktail containing phorbol 12-myristate 13-acetate (PMA),
ionomycin, and Brefeldin A (Biolegend). After staining with anti-CD4
FITC and 7-AAD, cells were fixed and permeabilized, followed by
staining with cytokine antibodies as recommended by the manufacturer
(Biolegend). The following cytokine antibodies used were (clone
numbers indicated in parentheses): IL-2 (JES6); interferon (IFN)-y
(XMG1.2) (Thl subset); IL-4 (11B11); IL-5 (TRFK5); IL-13 (eBio13A)
(Th2 subset); IL-17A (eBiol7B7); IL-17 F (eBiol8F10); IL-22
(IH8PWSR) (Th17 subset); IL-6 (MP5-20F3); tumor necrosis factor
(TNF)-a (MP6-X722); and granulocyte macrophage colony stimulating
factor (GM-CSF) (MP1-22E9) (other inflammatory cytokines). In ex-
periments involving T cells sensitized with SERCA2a 971-990, T cells
were cultured with splenocytes from naive mice in the presence or
absence of SERCA2a 971-990 for two days where monensin (1x) was
added in the last 12 h at each of the four time points namely, 6, 12, 24
and 36 h. After washing and staining with anti-CD4-FITC and 7-AAD,
cells were fixed and permebilized and stained with three cocktails of
cytokine antibodies namely, IFN-y-allophycocyanin (APC) and IL-2-
phycoerythrin (PE), IL-17A-APC and GM-CSF-PE and their corre-
sponding controls (rat IgG1-APC and rat IgG2a/IgG2b-PE). After ac-
quiring the cells by flow cytometry, percentages of cytokine-producing,
viable (7-AAD7) cells within the CD4 subset were analyzed using
FlowJo software. In all the treatment groups, while, APC-conjugated,
IFN-y, IL-17A and isotype controls are shown in the Y axis, the PE-
conjugated, IL-2, GM-CSF and isotype controls are shown in the X axis
in the flow cytometric plots. To determine the frequencies of IFN-v, IL-
17A and their controls, percentage values of the upper left and upper
right quadrants were added in their corresponding flow cytometric
plots. Similarly, percentage values in the upper right and lower right
quadrants were added to obtain the frequencies of cells producing IL-2,
GM-CSF and their controls, in their respective plots.

2.7. Proliferative responses of SERCA2a 971-990 -specific T cell hybridoma
and primary T cells to splenocytes from naive mice

To determine whether APCs spontaneously stimulate SERCA2a 971-
990 -specific T cells, we used both hybridoma cells (clone 80) and
primary T cells. For hybridomas, cells were cultured for 24 h (2.5 x 10*
cells/ml) with splenocytes obtained from naive A/J mice at different
ratios (1:1 to 1:20) in the presence or absence of SERCA2a 971-990 or
control (MCC 82-103) (50 ug/ml). After pulsing with *[H] thymidine
for 16 h, proliferative responses were measured as cpm. Similarly,
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primary T cells were also cultured with splenocytes at a ratio of 1:1
with or without peptides for 2 days, and proliferative responses were
measured 16 h after pulsing with 3[H)] thymidine (Rock et al., 1990;
Smith and Allen, 1992; Donermeyer et al., 1995). In MHC blocking
experiments, Fc-blocker-treated splenocytes from naive mice were
cultured with or without T cells supplemented with anti-IA* (10-2.16,
clone TIB 93, 20 pug/ml) and anti-IEX (M5,/114.15.2, clone TIB 120, 100
ug/ml; American Tissue Culture Collection, Manassas, VA, USA) or Rat
IgG (control; 100 pg/ml, MP Biomedicals, Santa Ana, CA, USA). The
proliferative responses were measured as above (Tamura et al., 1996;
Bright et al., 1999).

2.8. Determination of SERCA2a 971-990 -reactive T cell responses to
mononuclear cells (MNCs) generated from heart and liver

Groups of 5 to 6 naive A/J mice were euthanized, and animals were
immediately perfused with 10 ml of ice-cold 1x phosphate-buffered
saline (PBS) prior to harvesting of hearts and livers (Krishnan et al.,
2017). Briefly, hearts were cut into two halves and the pooled tissues
were minced and transferred to gentleMACS C Tube (Miltenyi Biotech,
San Diego, CA, USA) containing 4.7 ml of Hank's Balanced Salt Solution
supplemented with Collagenase II (600 U/ml; Worthington Biochemical
Corporation, Lakewood, NJ, USA) and DNase I (60 U/ml; AppliChem
GmbH, Darmstadt, Germany). After mixing by MACS Dissociator,
samples were incubated for 30 min at 37 °C using the MACSmix Tube
Rotator (Miltenyi Biotec); the tissue suspensions were mixed using the
MACS Dissociator. The homogenate was centrifuged and cell suspen-
sions were filtered using a 70-um cell strainer; after washing, red blood
cells were lysed and the debris removed using Debris Removal Solution
as recommended (Miltenyi Biotech). Finally, cell pellets were re-
suspended in growth medium, and cells were treated with Fc blocker
(Biolegend), followed by staining with 7-AAD and anti-CD45. After
washing, CD45™" cells within the live subset (7-AAD ~) were sorted by
Aria flow cytometry (FACS Aria, BD Biosciences, San Jose, CA, USA). To
obtain single cell suspensions from livers, tissues were minced and
centrifuged. The homogenate was digested in Hank's Balanced Salt
Solution containing Collagenase II (Worthington Biochemical Cor-
poration) and DNase I (AppliChem GmbH) at 37 °C for 30 min, followed
by centrifugation to remove hepatocytes. Cell pellets were washed with
1x PBS, and cell suspensions were then subjected to Percoll density
gradient centrifugation. The interphase representing the MNCs was
harvested, and, after washing and treating with red blood cell lysis
buffer, samples were centrifuged to obtain the MNC fraction. Cells were
then treated with Fc blocker, and after staining with CD45 and 7-AAD,
CD45™ cells were sorted by flow cytometry as above. Finally, cells
derived from both hearts and livers were evaluated for CD11b, CD11c,
CD19, and IEX, as well as for T cell responses, using SERCA2a 971-990
-specific primary T cells by *[H] thymidine-incorporation assay as de-
scribed above.

2.9. Isolation of primary ECs from hearts and livers and evaluation of T cell
responses to the ECs

ECs from hearts and livers of groups of 5-6 naive A/J mice were
isolated using the previously published method with some modifica-
tions (Lim et al., 2003; Chou et al., 2015; van Beijnum et al., 2008). In
brief, animals were euthanized using 30 % isoflurane, and ECs were
isolated by positive selection using immunomagnetic beads specific to
PECAM-1 (CD31) (Daneker et al., 1998; McDouall et al., 1996; Grafe
et al., 1994; Grafe et al., 1993). Essentially, the CD31-bound magnetic
beads were freshly prepared a day prior to isolating the cells by mixing
sheep anti-rat IgG Dynabeads (Thermo Fisher Scientific) and anti-CD31
(Clone: MEC13.3, Biolegend) in a final volume of 500 pl after a series of
washing steps. Finally, the CD31-conjugated beads were washed 4
times and resuspended in a volume of 200 pl for further use. To isolate
ECs, heart and liver tissues were minced with scissors to make small
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pieces (1 to 2 mm®) and digested with Collagenase II and Dispase (1
mg/ml each in DMEM/F12; GE Healthcare Bio-Sciences AB, Uppsala,
Sweden) at 37 °C for 40 min. The digested tissues were washed with
DMEM/F12 medium containing 10 % FBS; suspensions were filtered
using 70-pum and 40-um meshes and centrifuged at 500 g for 10 min at 4
°C. Cell suspensions were then incubated with the Dynabeads coated
with PECAM-1 (CD31) antibody. The bead-bound cells were collected
using BD IMag cell seperation magnet (BD Biosciences) and washed 3
times. Cells that bound to the magnetic beads were re-suspended and
cultured in 0.1 % gelatin-coated tissue culture plates in EC growth
medium (Cell Biologics). After growing for 5-7 days, cells were har-
vested at > 80 % confluence with trypsin-EDTA and used for experi-
ments; purity of ECs was ascertained by anti-CD31 staining. For pro-
liferation experiments, ECs and SERCA2a 971-990 -sensitized T cells
were cultured at a ratio of 1:1 individually or together with or without
SERCA2a 971-990 or MCC 82-103 for 2 days, and proliferative re-
sponses were measured by pulsing the cells with *[H] thymidine 16 h
later.

2.10. IFN-y treatment of ECs

The CD31% heart and liver ECs plated in gelatin-coated culture
flasks (T25 cm?) were grown to ~80 % confluency. On day 7 post-
culturing, cells were harvested by trypsinization (0.05 %) and treated
with or without Mouse IFN-y (500 ng/ml) (Biolegend) (Huynh et al.,
1995). After 3 days, cells were stained with antibodies for 1AK, IEX
CD80, CD86, and CD40 molecules and 7-AAD. Cells were acquired by
flow cytometry, and percentages of cells positive for each marker were
analyzed in the live (7-AAD ™) subset using FlowJo software.

2.11. Statistics

We used Wilcoxon rank-sum followed by Bonferonni multiple test
correction to determine differences in T cell responses. Observations for
the T cell responses were normalized prior to statistical testing per re-
peat experiment based on the average sum of input hybridoma or pri-
mary T cells and APCs or ECs. p < 0.05 was considered significant.

3. Results and discussion

We recently reported that SERCA2a contains multiple antigenic
determinants, and one of these epitopes, SERCA2a 971-990, was found

A

Immunobiology 225 (2020) 151896

to induce atrial myocarditis in A/J mice by generating both T cell and
antibody responses (Krishnan et al., 2018). However, it was unknown
as to how SERCA2a can be recognized by autoreactive T cells. Although
our efforts to localize the expression of SERCA2a in cardiac myocytes
provided leads to predict that its expression may occur close to the
plasma membrane (Krishnan et al., 2018), supporting evidence was
lacking. Thus, we made an effort to derive T cell hybridomas for
SERCA2a 971-990 with the expectation that T cells can respond to
antigens if they are displayed by APCs in naive animals. From a panel of
92 hybridoma clones, we chose clone 80 that was positive for CD3,
CD4, TCR vp10b, CD45, CD5, CD62 L, CD44, CD28, PD-1, PD-L1, CD2,
LFA-2 and CCR4. We determined antigen specificity of this clone by
staining with IEX and IAX dextramers for SERCA2a 971-990, expecting
that the IEX-specific clone 80 hybridoma cells should bind only to IEX,
but not IA* dextramers or controls (MCC 82-103 or RNase 43-56), and it
was the case (Fig. 1A, top panel). We also verified the cytokine-pro-
ducing ability of hybridoma cells to be in the order of TNF-a, IL-2, IL-4,
and IL-6 (Fig. 1B, bottom panel). Similar profiles have been described
for other antigens (Krishnan et al., 2015).

3.1. Splenocytes from naive A/J mice trigger antigen-specific T cell
responses spontaneously

We took advantage of SERCA2a 971-990 -specific T cell hybridomas
to test a hypothesis that APCs from naive animals display MHC/
SERCA2a complexes that can trigger antigen-specific T cell responses.
First, we cultured the clone 80 cells with splenocytes generated from
naive A/J mice in the presence or absence of SERCA2a 971-990 or MCC
82-103 (control) (Ashwell et al., 1988; Merrick et al., 2005; Prasad and
Gregerson, 1997). The clone 80 cells responded spontaneously to
splenocytes at ratios ranging from 1:1 to 1:20 with ratios up to 1:10
yielded significant differences between treatments (Fig. 2). Responses
were antigen specific, since SERCA2a 971-990, but not control (MCC
82-103), stimulated clone 80 cells. Of note, proliferative responses
obtained by co-culturing splenocytes with clone 80 cells alone, and with
control (MCC 82-103) were also comparable. The data suggest that
naive APCs express SERCA2a 971-990 and trigger T cell responses.

To investigate whether splenocytes from naive animals can stimu-
late primary T cells, we generated T cell cultures from A/J mice im-
munized with SERCA2a 971-990. We evaluated T cell responses to
splenocytes pulsed with or without SERCA2a 971-990 or MCC 82-103
(control) at a 1:1 ratio (Fig. 3A). We noted that the T cells co-cultured
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Fig. 1. Characterization of hybridoma cells. (A) Antigen-specificity. Clone 80 hybridoma cells were stained with two sets of dextramers (IEX/SERCA2a 971-990 and
MCC 82-103 ; and IAX/SERCA2a 971-990 and RNase 43-56) for 2 h, followed by anti-CD3, anti-CD4, and 7-AAD. After washing, cells were acquired by flow
cytometry and the dext™ cells were determined in the live (7-AAD ) CD3*CD4* subset. (B) Cytokine analysis. Hybridoma cells were stimulated with a cocktail of
PMA/Ionomycin/GolgiStop for 5 h. After washing, cells were fixed and permeabilized to stain with the indicated cytokine antibodies and their corresponding
controls. After acquiring by flow cytometry, percentages of cytokine "CD4™ T cells were determined. Representative data from 3 individual experiments are shown.



R. Arumugam, et al. Immunobiology 225 (2020) 151896

20 " Fig. 2. Proliferative responses of SERCA2a 971-990 -specific
% * * E**._.;** hybridoma cells cultured with or without splenocytes from

Lt L |
Ea =y T - naive mice and antigens. Clone 80 cells were cultured with

splenocytes from A/J mice with or without SERCA2a 971-990

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

154 ! . !

; H , (specific) or MCC 82-103 (control) at different ratios for 24 h.
<« : H _ % , 7 After pulsing the cells with 3[H] thymidine for 16 h, pro-
3 7 H 7 H / , / liferative responses were measured. Mean *+ SEM values are
= 104 ! ! ' shown (n = 3). *p = 0.001, **p = 0.023.

E 1 1 1
= i i i
< 1 1 1

51 ; i i

1 1 1

1 1 1

1 1 1

1 ) 1

1 1 1

0 1 1 1 ]
1:1 1:5 1:10 1:20
[] Hybridoma Hybridoma + APCs + SERCA2a 971-990

Il APCs B Hybridoma + APCs + MCC 82-103
[ Hybridoma + APCs

with splenocytes alone responded significantly, and expectedly,
SERCA2a 971-990, further increased the response, whereas responses
obtained with T cells cultured with MCC 82-103 were comparable with
those obtained with splenocytes alone (Fig. 3A). Further, we verified

the T cell responses to be MHC-restricted, as anti-IA* and IEX antibodies
significantly blunted the proliferation of T cells co-cultured with APCs
alone (Fig. 3B, left panel) or with SERCA2a 971-990, but not with
control (Fig. 3B, right panel). The data suggest that the APCs from naive
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Fig. 3. Determination of proliferative re-
sponses of SERCA2a 971-990 -sensitized T cells
to APCs loaded with or without peptides in the
presence or absence of MHC antibodies. (A)
Responses to APCs loaded with or without
peptides. SERCA2a 971-990 -sensitized T cells
were generated from A/J mice immunized
with SERCA2a 971-990, and cells were cul-
tured with SERCA2a 971-990 or MCC 82-103
in the presence or absence of splenocytes gen-
erated from A/J mice. Forty-eight hours later,
cells were pulsed with 3[H] thymidine, and
after 16 h, proliferative responses were mea-
sured. (B) Responses to APCs loaded with or
without peptides in the presence or absence of
MHC antibodies. Splenocytes from naive mice
were treated with Fc blocker and cultured with
or without T cells in the absence (left panel) or
presence of SERCA2a 971-990 (right panel)
and anti-IA* and anti-IE¥ antibodies or rat IgG
(control). Proliferative responses were mea-
sured as above after pulsing with *[H] thymi-
dine. Mean = SEM values are shown (n = 3).
*p < 0.001.
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Fig. 4. Cytokine responses in SERCA2a 971-990 -sensitized T cells exposed to splenocytes from naive animals. SERCA2a 971-990 -sensitized T cells were cultured
with splenocytes from naive mice supplemented with or without SERCA2a 971-990 (specific) or MCC 82-103 (control) for two days where monensin was added
during the last 12 h in each of the four different time points (18, 24, 36 and 48 h). At each point, cells were harvested and stained with anti-CD4, 7AAD. After fixation
and permeabilization steps, cells were stained with three cocktails of antibodies, each representing IFN-y-APC and IL-2-PE, IL-17A-APC and GM-CSF-PE and their
corresponding isotype controls (rat IgG1-APC and rat IgG2a/IgG2b-PE). Cells were acquired by flow cytometry to analyze the percentages of cytokine-producing CD4
T cells within the live (7-AAD ™) subset, where cells producing IFN-y, IL-17A and their corresponding controls (all APC-conjugated) are shown in the Y axis and the
cells producing IL-2, GM-CSF and their controls (all PE-conjugated) are shown in the X axis in the respective plots. Frequencies of cytokine producing cells are shown
in the tables below each plot by adding the percentage values of the upper left and upper right quadrants for APC-conjugated cytokine antibodies (IFN-y, IL-17A and
their controls). Similarly, percentage values of the upper right and lower right quadrants were added for PE-conjugated cytokine antibodies (IL-2, GM-CSF and their

controls). Representative data sets from 3 individual experiments are shown.

mice can induce proliferation of SERCA2a 971-990 -sensitized T cells
through MHC class II pathway, thereby potentially modulating their
functional responses.

3.2. SERCAZ2a 971-990 -sensitized T cells exposed to splenocytes from
naive mice produce inflammatory cytokines implicated in the development of
autoimmune myocarditis

We had previously shown that the SERCA2a 971-990 -senstized T
cells generated from immunized animals produced mainly Thl and
Th17 cytokines that can transfer disease to naive animals (Krishnan
et al., 2018). We reasoned that the SERCA2a 971-990 -sensitized T cells
exposed to APCs from naive mice produce cytokines similar to those
produced in response to SERCA2a 971-990 antigen-specifically. By in-
tracellular cytokine staining, we analyzed the frequencies of cytokine-
producing T cells in co-culture experiments, where we cultured
SERCA2a 971-990 -sensitized T cells with splenocytes (APCs) from
naive animals in the absence or presence of SERCA2a 971-990 or MCC
82-103 (control). Cytokine analysis was performed at four time points
(18, 24, 36 and 48 h) using antibody cocktails containing IFN-y and IL-
2, IL-17A and GM-CSF and their corresponding controls as described in
the Methods (Section, 2.6). As shown in Fig. 4, T cells with no exposure
to APCs, contain a low frequency of cytokine producing cells except
IFN-y, if any at 18 h (6.3 %). In contrast, cytokine-producing cells were
absent in the cultures containing APCs-alone. However, upon exposure
to APCs, SERCA2a 971-990 -sensitized T cells were found to produce
the inflammatory cytokines implicated in the induction of various au-
toimmune diseases including myocarditis (Krishnan et al., 2018;
Cihakova et al., 2008; Geppert and Lipsky, 1985; Bracamonte-Baran

and Cihékova, 2017; Baldeviano et al., 2010). These include mainly,
IFN-y (63.5 %) and GM-CSF (6.0 %), and, to a lesser extent, IL-17A (1.6
%) and IL-2 (1.2 %) with their peaks reaching at 24 h. As expected,
cytokine responses were also upregulated and reached peaks at 18 or 24
h in the presence of SERCA2a 971-990 (IFN-vy, 69.3 %; GM-CSF, 20.5 %j;
IL-17A, 9.1 %; and IL-2, 4.2 %) (Fig. 4). Likewise, cytokine responses in
cultures exposed to control (MCC 82-103) were also comparable to the
T cells co-cultured with APCs alone during the same period (IFN- v, 58.0
%; GM-CSF, 5.0 %; IL-17A, 1.6 %; and IL-2, 1.0 %). These data indicate
that the SERCA2a 971-990 -sensitized T cells responded to the antigen
displayed by the APCs and produce inflammatory cytokines that may
have a pathogenic role in the development of autoimmune myocarditis.

3.3. Heart and liver APCs and ECs differentially modulate SERCA2a 971-
990 -sensitized T cell responses

First, we asked whether APCs derived from non-lymphoid organs
can also present SERCA2a 971-990 by isolating MNCs from the hearts
and livers of naive A/J mice. We obtained MNCs from groups of A/J
mice, and, after staining with anti-CD45 and 7-AAD, we sorted
CD45%CD3~ viable (7-AAD ) cells by flow cytometry. We noted that
the CD45" cells contained cells in the order of B cells (CD19%), fol-
lowed by macrophages (CD11b*) and dendritic cells (CD11c*) and the
MNCs also expressed the MHC class II molecule IE¥ (Supplementary
Fig. 1A). Next, we cultured both heart and liver MNCs with SERCA2a
971-990 -reactive T cells as described above. The data revealed en-
hanced proliferative responses when T cells were cultured with either
MNCs alone or with peptides (SERCA2a 971-990 or MCC 82-103).
Responses obtained with MCC 82-103 were comparable to those for
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Fig. 5. Determination of proliferative responses of SERCA2a
971-990 -sensitized T cells cultured with or without ECs. (A)
CD31 staining. Heparin was administered to groups of naive
A/J mice, and after 10 min, animals were euthanized to col-
lect hearts and livers. Organs were washed with ice-cold
DPBS, and tissue homogenates were used to purify ECs as
described in the Methods section. Cells were plated in culture
dishes pre-coated with gelatin, and after 5-7 days they were
examined for CD31 expression by flow cytometry. (B)
Proliferative response. SERCA2a 971-990 -sensitized T cells
were cultured for 2 days with heart and liver ECs supple-
mented with or without SERCA2a 971-990 (specific) or MCC
82-103 (control). Cells were pulsed with 3[H] thymidine, and
16 h later proliferative responses were measured.
Mean + SEM values representing 3 individual experiments
with 5-6 animals in each are shown. *p < 0.001, **p =

cpm x 104
bt

0.023.
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cells cultured with MNCs alone (Supplementary Fig. 1B), and these
patterns were very similar to those noted with splenocytes described
above. Collectively, the data suggest that APCs present in both lym-
phoid and non-lymphoid organs can display SERCA2a 971-990 and
stimulate antigen-primed T cells. Of note, SERCA exists in multiple
isoforms (Lompré, 1998; Brandl et al., 1987; Wuytack et al., 1995).
While, SERCA2a is preferentially expressed in cardiomyocytes, vascular
smooth muscle cells and ECs, SERCA2b can be expressed in APCs like
macrophages (Li et al., 2004) that also has an equivalent epitope of
SERCA2a 971-990. Thus, it is possible that epitope from multiple iso-
forms can potentially stimulate SERCA2a 971-990 -senstized T cells. It
is also possible that the APCs in the target organs like heart can acquire
self-antigens from other SERCA2a-expressing cells through phagocy-
tosis of dead cells or autophagy that migrate to the spleens (Ansari
et al., 1991; Larsen et al., 1990).

Next, since SERCA2a is known to be expressed in non-professional
APCs, we tested a hypothesis that these cells are not expected to sti-
mulate T cells. To this end, we purified CD31* ECs by magnetic se-
paration from hearts of naive A/J mice as previously described (Lim
et al., 2003; Chou et al., 2015; van Beijnum et al., 2008). After verifying
the purity of ECs to be more than 90 % (Fig. 5A), we used them in co-
culture experiments using SERCA2a 971-990 -reactive T cells in a
proliferation assay. The data revealed that the T cell responses in cul-
tures involving heart ECs and T cells were blunted (Fig. 5B, left panel).
However, upon supplementation with SERCA2a 971-990, the T cell
responses were further blunted, but not in the cultures exposed to MCC
82-103 (control) (Fig. 5B, left panel). We then tested whether liver ECs

ZAT cells + ECs + SERCA2a 971-990
EJT cells + ECs + MCC 82-103

follow a pattern similar to heart ECs by sorting the ECs from liver
(Fig. 5A, right panel). In co-culture experiments, ECs stimulated the
SERCA2a 971-990 -primed T cells (Fig. 5B, right panel), and the pat-
terns of T cell responses were similar to those obtained with splenocytes
as described above. The finding that the basal proliferative responses
obtained with heart ECs were high (Fig. 5B), but reduced upon ex-
posure to T cells, suggests that the heart ECs might have been sup-
pressed by T cells leading to their death. But why, then, exposure to
SERCA2a 971-990, but not MCC 82-103 led to reduced proliferative
responses? Similarly, why such a pattern was lacking with the liver
ECs? One possibility is that the ECs in various organs can behave dif-
ferently, and their phenotypes can differ in the expression of MHC and
co-stimulatory molecules (Lim et al., 2003; Pober et al., 2017).

To address the above questions, we examined the expression of
MHC class II (IA* and IE¥), MHC class I (H-2D%, K¢ and LY), and co-
stimulatory (CD80, CD86, and CD40) molecules in both heart and liver
ECs by flow cytometry. These analyses revealed that heart ECs lacked
the expression of both IA¥ and IEX, CD86, and CD40 and showed only
low levels of CD80 (4.0 %) (Fig. 6, top left panel). Similar analysis of
liver ECs showed the expression of IEX, but not IA¥, whereas other
molecules (CD80, CD86 and CD40) were detected in the range of ~60
to 90 % (Fig. 6, top right panel). Heart and liver ECs, however, ex-
pressed all three MHC class I molecules as expected (data not shown).
We then exposed the heart and liver ECs to IFN-y, a cytokine known to
promote the expression of MHC class II and co-stimulatory molecules,
to determine its effects on ECs (Linke and Male, 1994; Dore-Duffy et al.,
1996; Knolle et al., 1999; Marelli-Berg et al., 2000; Ma and Pober,
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Fig. 6. Effect of IFN-y on ECs. Naive A/J mice were used to prepare ECs from hearts and livers as described in the Methods section, and cells were treated with or
without IFN-y for 3 days. After trypsinization, cells were washed and stained with the indicated markers and 7-AAD. Cells were acquired by flow cytometry to analyze

the expression of indicated markers with the live (7-AAD ™) CD31™" subset.

1998; Scott et al., 2018; Geppert and Lipsky, 1985). Expectedly, heart
ECs treated with IFN-y revealed upregulation of both MHC class II
molecules (IAX, 49.0 % and IEX, 21.0 %), as well as CD80 (97.0 %) and
CD40 (77.0 %), but expression of CD86 remained unaltered (Fig. 6,
bottom left panel). Similarly, expression of the MHC class II molecule
IA¥ in liver ECs, which was lacking prior to exposure to IFN-y, could
now be detected with IFN-y treatment (Fig. 6, bottom right panel).
Overall, the data suggest that lack of expression of MHC class II mo-
lecules in heart ECs correlates with the absence of proliferative re-
sponses of T cells, since MHC class II molecules are needed for antigen
presentation. Conversely, since liver ECs express at least one of the two
MHC class II molecules (IE¥), they are able to present SERCA2a 971-990
to the responding T cells. This may be the reason the proliferative re-
sponses obtained in cultures containing liver ECs and T cells merely
tended to be greater (Fig. 5B, right panel). While these explanations can
be logically construed, it was difficult to explain why the proliferative
responses of ECs were blunted in the heart. One possibility is that the
SERCA2a 971-990 may contain antigenic determinants for CD8 T cells,
and if so, they may potentially induce EC death. Identification of CD8 T
cell determinants, if any may provide new insights as to their sig-
nificance.

In summary, by creating T cell hybridomas for SERCA2a 971-990,
we addressed a hypothesis that naive APCs can spontaneously induce T
cell responses antigen specifically. This hypothesis was tested using
APCs generated from both lymphoid and non-lymphoid organs, and
demonstrate that the responding T cells can produce pro-inflammatory
cytokines. Of note, presentation of MHC/peptide complexes has been
previously described for other cardiac antigens like cardiac myosin
heavy chain-a (Smith and Allen, 1992), but the pathologic significance
was not tested. Likewise, constitutive presentation of such complexes
has also been reported for self-antigens of the central nervous system
such as myelin basic protein (MBP) 1-44, MBP 83-102, PLP 139-151
and PLP 178-191 (Voskuhl, 1998). Furthermore, we had demonstrated
that A/J mice although contain SERCA2a 971-990 -reactive T cells in
their naive periphery (Krishnan et al., 2018), they remain healthy
(Krishnan et al., 2018). It is currently unknown whether enhanced
production of inflammatory cytokines (in particular, IL-17A) that oc-
curs in the immunized animals is a missing factor (Krishnan et al.,
2018). Alternatively, antigen-specific T cells in the naive animals may
have a capacity to induce disease, but they could be potentially sup-
pressed by regulatory T cells. We have not addressed these possibilities.
While our data have provided an explanation as to how SERCA2a 971-
990 -reactive T cells can induce myocarditis (Krishnan et al., 2018), the
data also revealed new insights into the possibility that SERCA2a 971-
990 -reactive T cells can potentially induce EC death. This may be an
important mechanism because EC dysfunction has been proposed as an
important predisposing factor for induction of vascular inflammation
and coronary heart diseases like atherosclerosis (Tesfamariam and
DeFelice, 2007; Steyers and Miller, 2014; Gimbrone and Garcia-
Cardefia, 2016; Tousoulis et al., 2008).
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