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Abstract 21 

Sex-related differences in the occurrence of autoimmune diseases is well documented, with 22 

females showing a greater propensity to develop these diseases than their male counterparts. Sex 23 

hormones namely, dihydrotestosterone and estrogens have been shown to ameliorate the severity 24 

of inflammatory diseases. Immunologically, the beneficial effects of sex hormones have been 25 

ascribed to the suppression of effector lymphocyte responses accompanied by immune deviation 26 

from pro-inflammatory to anti-inflammatory cytokine production. In this review, we present our 27 

view of the mechanisms of sex hormones that contribute to their ability to suppress autoimmune 28 

responses with an emphasis on the pathogenesis of experimental autoimmune encephalomyelitis. 29 
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1. Introduction 32 

The normal function of the immune system is to protect organisms against invading 33 

pathogens.  When such a response is directed against self-tissues, autoimmunity may ensue.  34 

However, healthy individuals can have signatures of autoimmune response as evidenced by the 35 

detection of low levels of antibodies and T cells against autoantigens that may reflect formation of 36 

natural antibodies or idiotypic networks (1-4).  Autoimmune diseases (AIDs) are clinically 37 

manifested when autoimmunity leads to tissue damage disrupting the functions of affected organs 38 

(5, 6).  39 

AIDs are generally noted to be the leading causes of deaths in young to middle-aged 40 

women in the United States (7). Estimates indicate a large variation in both the incidence (less than 41 

1 per 100,000 persons to more than 20 per 100,000) and prevalence (less than 5 per 100,000 to 42 

more than 500 per 100,000) of these diseases (8). Approximately 50 million Americans may have 43 

some form of an autoimmune disease and of these more than 75 percent are women (7). The 44 

chronic nature of many of these diseases such as multiple sclerosis (MS) can significantly impact 45 

medical costs and quality of life (8).  46 

MS is a chronic inflammatory and demyelinating disease of the central nervous system 47 

(CNS), and it affects approximately 2.5 million people worldwide showing a female 48 

preponderance (2 to 3:1). Within the United States alone, MS affects approximately 400,000 49 

people with 10,000 new cases diagnosed annually (9-11) resulting in the loss of ~2.5 billion to the 50 

economy (12, 13). While, the disease can be seen in people of any age, it is commonly diagnosed 51 

in the age group of third to fifth decades. Although, no known causes are identified, it is commonly 52 

believed that a combination of genetic susceptibility and environmental factors trigger the disease-53 

onset (9, 11).   Traditionally, four types of MS have been identified.  These include, relapsing-54 
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remitting MS (RRMS), secondary progressive MS, primary progressive MS, and progressive-55 

relapsing MS (PRMS) (14), with RRMS being the most common (~85%) and PRMS, the rarest of 56 

all (~5%) (11).  A recent classification emphasizes combination of active or inactive, and/or stable 57 

or progressive nature of the disease course (15). The pathological diversity of lesions in the white 58 

and grey matter with differential mechanistic signatures provides an additional layer to the variable 59 

clinical phenotypes (16, 17). Given this complex nature, it is a challenge to study the pathogenetic 60 

events in humans, and therefore, various animal models of experimental autoimmune 61 

encephalomyelitis (EAE) are routinely used in MS research. 62 

EAE can be induced in a wide-range of species (rodents: rabbits, rats and mice; and non-63 

rodents: monkeys and pigs) (14, 18-22). The two hallmarks of EAE are, inflammation and 64 

demyelination, and the disease is typically mediated by autoreactive T cells (23, 24).  While EAE-65 

induction by active immunization involves the use of myelin antigens or their immunogenic 66 

peptides in complete Freund’s adjuvant (CFA), the disease can be transferred to naïve animals by 67 

adoptively transferring myelin-reactive T cells.  Three main myelin antigens have been identified 68 

to induce EAE namely, myelin basic protein (MBP), proteolipid protein (PLP), and myelin 69 

oligodendrocyte glycoprotein (MOG) and their disease-inducing peptides are also identified.  70 

These include MBP 1-11 that induces EAE in B10.PL or PL/J mice (H-2u); PLP 139-151-induced 71 

EAE in SJL mice (H-2s) and MOG 35-55-induced EAE in C57BL/6 mice (H-2b) (14, 25). Of these 72 

models, sex differences have been well noted with the PLP 139-151-induced EAE in SJL mice. In 73 

this model, while females show chronic relapsing-remitting paralysis, the disease-course is 74 

restricted to the monophasic form in male mice (26). These phenotypes resemble some of the 75 

clinical features of MS making the SJL model of EAE to be helpful for studying sex differences 76 
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in the CNS autoimmunity (26). Here we review the salient features of sexual dimorphism of AIDs 77 

with an emphasis on the role of T cells in the pathogenesis of EAE. 78 

2. Sexual dimorphism in the occurrence of infectious diseases vs. AIDs 79 

It has been known for a long time that susceptibility to various diseases differs by sex. 80 

While males are more susceptible than females to viral, bacterial and parasitic infections, the 81 

tendency to develop autoimmune diseases is higher in females than males (27) (Fig 1).  82 

2.1. Infectious diseases. Females are generally more resistant than males to viral infections 83 

due to the higher antibody production (28), especially during the period between puberty and 84 

menopause (27), but the conflicting reports may question this notion. While males appear to 85 

contract certain viral infections a higher rate – such as human immunodeficiency virus, west Nile 86 

virus, hepatitis B virus, influenza virus and Hantavirus (28, 29) – females with the same viral load 87 

as males can be at a higher risk of developing acquired immune deficiency syndrome (30). 88 

Similarly, during the 2009 H1N1 avian influenza pandemic in Canada, women were found to be 89 

at two- to six-fold higher risk of dying than men (31). Conversely, emerging evidence suggests 90 

that mortalities are more common in males than female individuals affected with coronavirus 91 

disease-19 that can be ascribed to other confounding factors such as smoking and behavioral 92 

changes (32-34). Generally, women are known to mount higher anti-viral immune responses than 93 

men which may be beneficial to clear the virus but prolongation of such a response can lead to 94 

increased disease-severity (31, 35).  For bacterial infections however, males were found more 95 

susceptible than females to Mycobacterium tuberculosis (M.tb), Helicobacter pylori, Coxiella 96 

burnetii, Pseudomonas aeruginosa and Salmonella typhimurium infections (36-40). Additionally, 97 

the proportion of adult males found to have symptomatic M.tb infections was two-fold higher than 98 

in females (36). Conversely, women are more likely than men to survive from sepsis (41). Females 99 
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have a lower incidence of malaria than males (42) and experimentally, female mice also were 100 

found to be more resistant than males to Plasmodium chabaudi infection (43). These data suggest 101 

that sex differences may vary from disease to disease of infectious origin.  102 

2.2. AIDs. It is well conceived that most autoimmune diseases are more prevalent in females 103 

than males (44, 45). This phenomenon has been well documented especially with AIDs mediated 104 

by autoantibodies such as Sjögrens syndrome (female to male ratio of 16:1), systemic lupus 105 

erythematosus (SLE) (7:1), Hashimoto’s thyroiditis (19:1) and Grave’s disease (7:1), in which, 106 

about 80% of the patient population was women (46). In the middle tier of diseases, which includes 107 

rheumatoid arthritis (RA) (3:1) and MS (2:1), the sex distribution has been 60-75% in women 108 

relative to men (46). In fact, a study involving Danish cohorts revealed the risk for developing MS 109 

was increased more than two-fold in females, whereas in males, the disease remained unchanged 110 

over a period of 25 years (47). Likewise, neuromyelitis optica spectrum disorder (NMOSD) is also 111 

characterized by a high female predominance and the disease-outcomes can also be influenced by 112 

the sex (48). Interestingly, this difference is much higher in NMOSD associated with AQP4-113 

antibodies, and less in seronegative NMOSD without pathogenic autoantibodies (49, 50). 114 

However, for other diseases such as inflammatory bowel disease and type 1 diabetes (TID), the 115 

prevalence rates are similar for both sexes (51). Conversely, Guillain-Barre syndrome appears to 116 

be occurring at equal or higher rates in males than females (51), whereas, myasthenia gravis shows 117 

a female predominance in the early-onset as opposed to a male predominance in the late onset of 118 

the disease (52). Likewise, myocarditis is more frequently reported in young men than their female 119 

counterparts (53). Of note, male patients with later onset MS have a higher risk for faster disability 120 

progression suggesting that sex-differences may also be seen in the disease course (54). 121 



7 

 

 Furthermore, occurrence of AIDs appears to be influenced by the reproductive cycles in 122 

affected individuals. For example, pre-pubertal cases of MS are extremely rare, with only 3-5% 123 

cases reported in individuals younger than 18 years of age. The finding that sexual dimorphism is 124 

seen mostly in post-pubertal women suggests that puberty is a critical risk factor (55). For example, 125 

the female-to-male ratio for SLE is found to be 2-6:1 prior to puberty (9-14 years for boys and 8-126 

13 years for girls), as opposed to 9:1 after puberty (≥ 15 years for boys and ≥14 years for girls) 127 

(56). Additionally, disease severity can be influenced by pregnancy, as shown with MS, where the 128 

clinical signs of the disease are suppressed during pregnancy, especially during the third trimester.  129 

However, the risk of MS relapse is increased in the first 3 months of post-partum and returns to 130 

the pre-pregnancy level by 6 months after delivery (57, 58).  In the case of RA however, symptoms 131 

can be low or completely suppressed during gestation, whereas women with SLE often have 132 

exacerbated symptoms during pregnancy (56). While, these observations point to a possibility that 133 

the sex hormones may determine the clinical outcomes of AIDs, primary triggers of these diseases 134 

remain largely unknown. 135 

2.2.1. Factors that influence the development of AIDs. Two major factors have been 136 

implicated in the induction of AIDs.  These include, genetic susceptibility and exposure to 137 

environmental factors and the readers may find excellent reviews on these topics elsewhere (59, 138 

60). Furthermore, transcriptome profiles of sex chromosomes, specifically X, and epigenetic 139 

variations also appear to influence the occurrence of autoimmunity (Fig 1).  One such transcript is 140 

KDM6a where the animals deficient for this gene were found resistant for the development of EAE 141 

(61). Other potential candidates include Forkhead box P3 (FoxP3) and Toll like receptor (TLR) 7 142 

(62). Likewise, epigenetic modifications (DNA methylation, histone modifications, chromatin 143 

remodeling and non-coding RNAs) at MHC loci may influence sex differences in MS (51, 63) 144 
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(Fig 1). Additionally, polymorphisms in the Interferon (IFN)-γ and Interleukin (IL)-12 receptor β 145 

genes were noted with sex differences in susceptibility to MS (64, 65). Deficiency of the Fas/CD95 146 

death receptor was associated with decreased apoptosis of inflammatory cells in the CNS with 147 

enhanced EAE severity. Such an association was also seen in women with MS (66), suggesting 148 

that the cellular responses might be different between sexes.  149 

 Additionally, it has been recently shown that the sex differences in autoimmunity can be 150 

influenced by the gut microbiota (Fig 1).   For example, specific pathogen-free non-obese diabetic 151 

(NOD) mice show a female preponderance to develop TID, but the germ-free mice lose such a 152 

bias (67).  Furthermore, gut flora differ between sexes, a trend reversed by male castration 153 

suggesting that androgens can influence the gut microbiota (67). Likewise, colonization by 154 

commensal microbes led to elevated serum testosterone levels and protection of male NOD mice 155 

from developing TID (68). Importantly, transfer of gut microbes from adult males to immature 156 

females altered the microbiota in females leading to reduced islet inflammation and autoantibody 157 

production and protection from TID occurring in conjunction with increased testosterone levels 158 

(68).  These data suggest that the gut microbiota can be an important determinant of the outcomes 159 

of sexual dimorphic nature of autoimmune diseases in those affected. In support of this preposition, 160 

microbiota composition revealed diverse microbial populations in association with chronic-161 

progressive and chronic relapsing-remitting type of paralysis as evaluated in two mouse strains 162 

namely, C57Bl/6 and SJL mice (69). However, existence of sex-specific altered microbiota, if any 163 

that can potentially contribute to the sex bias in EAE phenotypes needs further investigations. 164 

Taken together, the data indicate that the immune microenvironments in males and females might 165 

be uniquely influenced by sex hormones.   166 

 167 



9 

 

3. Immune mechanisms of sex hormones 168 

3.1 Expression of sex steroid receptors in immune cells.  Physiologically, estrogens are 169 

responsible for female sexual characteristics, similar to androgens in males (70). Estrogens include 170 

estrogen (E1), estradiol (E2) and estriol (E3), of which, E3 is produced only during pregnancy 171 

(71). Their effects are mediated through estrogen receptor alpha (ERα) and estrogen receptor beta 172 

(ERβ) through the formation of homodimers or heterodimers. ERα has been detected in dendritic 173 

cells (DCs), monocytes, macrophages, natural killer (NK) cells, mast cells, B cells and T cells (72-174 

77). Even though CD4 T cells express more ERα than ERβ, CD8 T cells and monocytes express 175 

low amounts of both ERs. On the contrary, B cells express higher amounts of ERβ than ERα (78). 176 

 Androgens mediate their effects predominantly by binding to androgen receptors (AR) 177 

located intracellularly (79), but they also can be expressed in a non-classic form on the cell surface 178 

(80). Several immune cells like neutrophils, macrophages, B cells and T cells have been shown to 179 

express AR (79, 81). In thymic T cells, only classic AR has been detected, whereas both forms 180 

have been noted in the splenic T cells (82). Likewise, while both macrophages and B cells can 181 

express classic AR, non-classic AR is expressed only in macrophages (83). Since, most terminally 182 

differentiated immune cells express sex hormone receptors, their functionalities can be potentially 183 

modulated by sex hormones.  184 

3.2. Effect of sex hormones on innate immune cells. Several reports indicate significant 185 

differences in the innate immune responses between sexes (Fig 1). For example, healthy female 186 

macaques have increased counts of most leukocyte subpopulations in their peripheral blood than 187 

their male counterparts (84). Similarly, healthy female mice have higher numbers of leukocytes in 188 

the pleural and peritoneal cavities than do male mice (85). Circulating NK T cells can also be more 189 

numerous in healthy women than men (86). Male healthy mice, however, appear to have more 190 
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neutrophils than do females (87). Such variations also have been noted in the ability to respond to 191 

microbial products. For example, in the airway inflammation model of asthma, greater numbers of 192 

macrophages and DCs were found to migrate from lungs to the draining lymph nodes in females 193 

as compared to males (88). Human monocytes from males after lipopolysaccharide (LPS) 194 

stimulation can produce more of IL-1β, tumor necrosis factor (TNF)-α and IL-12 than those from 195 

females (89). Similarly, compared to female neutrophils, male neutrophils release greater amounts 196 

of TNF-α in response to LPS stimulation. This hyper-responsiveness of male neutrophils to LPS 197 

has been suggested as a potential mechanism in making males more susceptible than females to 198 

sepsis (90). Furthermore, higher levels of TLR 7 detected in females compared to males can have 199 

implications in their ability to respond to virus infections, because TLR-7 is involved in the 200 

recognition of single-stranded viral RNA molecules (91).  201 

3.2.1. Effects of sex hormones on antigen-presenting cells. Most antigen-presenting cells 202 

express both ERα and ERβ (74, 92). Estrogens can regulate the functions of 203 

monocytes/macrophages and DCs in various ways (Fig 1). For example, E2 inhibits expression of 204 

IL-1, IL-6 and TNF-α in activated macrophages (93). DCs pretreated with E2 can suppress antigen-205 

presenting functions by enhancing their ability to produce the anti-inflammatory cytokines IL-4 206 

and IL-10 (94). However, it also has been reported that E2, acting via ERα, can promote 207 

differentiation of DCs (92); the E2-treated DCs have superior antigen-presenting function with 208 

increased major histocompatibility complex (MHC) class II expression (95). Similar effects also 209 

were noted with testosterone-treated macrophages (96). Although male mice appear to have lower 210 

numbers of Langerhans’s cells (LC) than female mice, androgens can influence DC development 211 

(97). Topical application of testosterone or its metabolite dihydrotestosterone (DHT) can result in 212 

a significant decrease in the density of LCs in both normal females and orchiectomized males (98). 213 
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However, DHT appears not to promote granulocyte macrophage colony-stimulating factor-driven 214 

DC differentiation (92).  Furthermore, estrogen or progesterone can activate macrophages and 215 

promote wound healing through angiogenesis and tissue remodeling (99). Androgens also can 216 

modulate inflammatory responses during acute wound healing, as evidenced by the observation 217 

that castration or blockage of androgens can result in suppressed recruitment of macrophages (100, 218 

101), as well as the experimental observation that AR-deficient mice show accelerated wound 219 

healing (79) (Fig 1). These observations suggest that the innate immune functions can be 220 

modulated by estrogens or androgens similarly.   221 

3.3 Effect of sex hormones on adaptive immune cells. Adaptive immune responses are 222 

mediated by B cells and T cells. While, some of the common lymphoid progenitors originated in 223 

the bone marrow can be educated within bone marrow to become B cells, some progenitors go to 224 

thymus and mature to become CD4 or CD8 T cells. T cells and B cells recognize self-antigens in 225 

the corresponding primary lymphoid organs. While, strong recognition of self-antigens leads to 226 

the death of immature lymphocytes by negative selection, weak recognition favors positive 227 

selection of developing lymphocytes, indicating that the lymphocytes present in the peripheral 228 

repertoires must have seen the self-antigens.  Conversely, if the self-antigens are not expressed in 229 

the generative lymphoid organs, then the developing lymphocytes can escape central tolerance.  230 

This has been clearly demonstrated in the case of PLP 139-151 as the naïve repertoire of SJL mice 231 

contain a significant proportion of PLP 139-151-reactive T cells (102).  Mechanistically, this 232 

phenomenon has been ascribed to the thymic expression of truncated form of PLP, called DM-20 233 

isoform that contain a deletion in the coding region, representing the motif, PLP 139-151 (102-234 

104).  Furthermore, in addition to repressive effects on lymphopoiesis, estrogens and testosterone 235 

can directly modulate the expression of autoimmune regulator (AIRE) protein that has a pivotal 236 
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role in the thymic expression of self-antigens (105).  While, estrogen suppresses AIRE via 237 

epigenetic changes (106, 107), androgens promote AIRE’s expression, an effect that can be 238 

abolished by castration (106, 108).  Whether enhanced expression of AIRE in the male thymus can 239 

be directly related to their low susceptibility to autoimmune diseases needs further clarifications.  240 

Additionally, sex hormones have been shown to modulate lymphocyte development (Fig 1). 241 

AR can inhibit T cell development in the thymus, as castrated animals exhibit thymic enlargement 242 

and increased numbers of lymphocytes that can be reversed by androgen-replacement therapy (83, 243 

109, 110). E2 has been shown to decrease B cell lymphopoiesis, since pregnancy levels of 244 

estrogens have been correlated with both a significant reduction in B cell numbers and activity of 245 

B lymphocyte precursors in the bone marrow (111). Experimentally, formation of B cells was 246 

reduced in the bone marrow of mice treated with E2, while castration or ovariectomy led to 247 

increase in B lymphopoiesis ER-dependently (112, 113). In addition, E2 can dampen B cell 248 

receptor (BCR) signals and favor the generation of marginal zone B cells and survival of 249 

autoreactive B cells (114, 115). Similar suppressive effects were noted with androgen on B cell 250 

development. Assessment of B cell progenitors in the bone marrow of castrated mice revealed a 251 

dramatic increase in late pro-B cell levels, leading to increases in the numbers of peripheral B 252 

cells, but to a lesser degree in pre-B and immature B cell populations (116, 117). Estrogens can 253 

block T cell development and cause thymic atrophy in an ERα-dependent manner (118). 254 

As to the peripheral repertoires, both human and macaque females appear to possess a higher 255 

number of circulating CD4 T cells, including CD4/CD8 ratios, than males (89, 119). Likewise, 256 

human peripheral blood CD4 T cells from females produce relatively higher levels of the T-helper 257 

(Th) 1 cytokine, IFN-γ, than from males (120). As to MS, although autoantibodies contribute to 258 

the disease pathogenesis, no sex-specific variations have been noted with antibodies in affected 259 
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individuals.  However, the peripheral repertoires of female humans and non-human primates can 260 

contain a relatively high proportion of activated B cells (84, 121), suggesting that lymphocyte 261 

responses can be potentially dictated by the inherent production of hormones specific to each sex. 262 

3.3.1. Effects of sex hormones on the effector lymphocyte responses. Sex hormones have 263 

been shown to exert anti-inflammatory effects (Fig 1), and therapeutically, estrogens and DHT 264 

and their derivatives have been used in various diseases (Table 1). Specifically, as to MS, reduced 265 

brain lesions and relapse rates were noted with estrogen therapy accompanied with reduced 266 

inflammatory cytokines (Th1 and TNF-α) (122, 123).  Likewise, DHT treatment was associated 267 

with decreased fatigue and increased gray matter volume with a corresponding decrease in CD4 T 268 

cell infiltrates and IL-2 production, and increase in TGF-β1 secretion (124, 125).  Experimentally, 269 

low doses of estrogens have been shown to stimulate Th1 responses, whereas high doses equivalent 270 

to pregnancy levels can promote Th2 response in primary cultures (126, 127). Estrogens also can 271 

stimulate the production of regulatory T cells (Tregs) by upregulating the expression of FoxP3 272 

(128, 129), and other non-FoxP3-expressing Treg subsets such as Bregs, CD8+CD122+ Treg cells, 273 

and CD11b+ CD206+ ARG-1+ M2 like macrophages, among others (130). EAE mice treated with 274 

E2 or E3 show reduced disease severity through inhibition of Th1 and Th17 cytokine production 275 

with a corresponding increase in Th2 cytokines (126, 131). Similarly, testosterone also ameliorates 276 

EAE severity with a Th2 bias, as androgen-treated T cell lines, as opposed to untreated cultures, 277 

secrete a lower amount of IFN-γ compared to IL-10 (132-134).  Although, testosterone appears 278 

not to promote differentiation of murine Treg cells, high testosterone and low estrogen conditions 279 

may promote skewing of Th1/Th17 responses toward Treg cells (135). Recent reports suggest that 280 

males possess high frequencies of innate lymphoid cells (ILC) 2, and IL-33 produced from mast 281 

cells facilitate induction of non-pathogenic, Th2 rather than encephalitogenic, Th17 cytokines in 282 
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the females (136). But determination of antigen-specificity of these Th subsets has remained a 283 

major challenge in the field. 284 

In our research, we made efforts to understand the cellular basis for sex bias in the occurrence 285 

of EAE in SJL mice by testing the hypothesis that the EAE-phenotypic differences between sexes 286 

are due to defects in antigen-specific, CD4 T cell responses. To this end, we created MHC class II 287 

(IAs) tetramers and dextramers for PLP 139-151 that can detect antigen-specific T cells with a high 288 

degree of specificity and sensitivity (137). By enumerating the precursor frequencies of PLP-289 

specific CD4 T cells flow cytometrically, we noted that the lymph node cells derived from male 290 

and female SJL mice responded equally to PLP 139-151, suggesting no defect in their ability to 291 

respond to self-antigens. We have also verified this phenomenon for an environmental microbe-292 

derived epitope that cross-reacts with PLP 139-151 (138). Furthermore, dextramer staining 293 

analysis of CNS infiltrates also did not reveal any significant variations between sexes with PLP-294 

specific T cells as evaluated by flow cytometry (Fig 2, top panel). Next, we established a novel 295 

in situ dextramer staining method to localize PLP-specific CD4 T cells in the brains of EAE mice 296 

by laser scanning confocal microscopy (LSCM) (139). By evaluating brains obtained from male 297 

and female mice affected with EAE, we found the PLP dextramer+ cells to be scattered all through 298 

the tissues with equal proportions in both male and female mice, ruling out defects in the migration 299 

of antigen-specific T cells into the CNS (Fig 2, bottom panel).  Finally, T cells harvested from 300 

the brains of EAE mice and the T cell cultures stimulated with PLP 139-151 in vitro showed 301 

comparable expression of most of the positive and negative regulators of T cell activation in both 302 

male and female mice (unpublished observations). Based on these findings, we envision a scenario 303 

in which equal numbers of PLP-reactive, pathogenic T cells infiltrate into the brains in both male 304 
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and female SJL mice, but their survivability may differ between sexes raising a question whether 305 

differences exist in the biochemical pathways between DHT and estrogen.  306 

4. Biochemical mechanisms of sex hormones 307 

 Sex hormones mediate their cellular functions through both the genomic/nuclear and 308 

nongenomic/membrane signaling pathways, with the expected end result being transcriptional 309 

regulation (140, 141) that may affect cell proliferation or cell death (142-144). For example, in 310 

breast cancer cells, E2 stimulates cell growth by augmenting transition from G1 to S phase, leading 311 

to activation of cyclin-dependent kinase and retinoblastoma protein phosphorylation (145, 146). 312 

Whereas other groups have also demonstrated that E2 is capable of inducing apoptosis in breast 313 

and prostate cancer cells, thymocytes, monocytes, macrophages, neuronal cells and T cells (147-314 

150). Similarly, androgens also can regulate apoptosis in breast and prostate cancer cells, human 315 

renal tubular leukemic and primary cells, including monocytes and macrophages and T cells (151-316 

153).  Recently, autophagy-associated cell death has been described that involves the upregulation 317 

of autophagy flux, its machinery and the accumulation of autophagosomes (154).  A relationship 318 

has been shown recently between sex hormones, apoptosis and autophagy. For example, pregnancy 319 

levels of E2 and progesterone exert stimulatory effects on autophagy in mammary epithelial cells 320 

by suppressing mammalian target of rapamycin (mTOR) activation that occurs in association with 321 

apoptotic cell death (155). Additionally, E2 may regulate transcription factors targeted by 322 

autophagy, miRNAs and histone modifications (156). Likewise, E2 was shown to inhibit 323 

osteoblast apoptosis by promoting autophagy via the mTOR pathway (157).  But, less is known 324 

about androgens, but they were shown to promote prostate cancer cell growth through the 325 

induction of autophagy, in part through the production of reactive oxygen species (158). Because 326 

both autophagy and apoptosis are well-controlled biological processes that play important roles in 327 
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tissue homeostasis and disease, dissecting the cross-talk between the two, if any in the context of 328 

sex hormones may lead to identification of molecules that affect both processes (159, 160).  329 

To address the above theme, we established an in vitro system to determine the mechanistic 330 

basis for DHT-mediated effects in autoreactive T cells, since DHT has been successfully used to 331 

treat EAE. Unexpectedly, we noted that DHT reduced the proliferative responses to PLP 139-151, 332 

but the effects were not selective, since both proliferating and non-proliferating cells were equally 333 

affected (161). Likewise, using MHC class II dextramers, we failed to note any immune deviation 334 

toward Th2 phenotype in antigen-specific T cells; rather, cells capable of producing all major 335 

inflammatory cytokines (Th1 and Th17), including Th2 cytokines, were reduced in DHT-treated 336 

cells. We also showed that DHT-mediated effects involved the induction of cell death, which also 337 

was associated with autophagy in autoreactive T cells (161). Although our data did not support the 338 

notion that DHT-mediated effects accompany the appearance of IL-10-producing cells (132-134), 339 

production of IL-10 by non-T cell sources in vivo or in mixed T cell cultures in response to DHT-340 

treatment cannot be discounted. Previous reports indicate that DHT can ameliorate EAE when 341 

administered either during induction or in the effector phase of the disease process (132, 134). Our 342 

observation that DHT induces cell death of both proliferating and non-proliferating T cells may 343 

mean that the DHT-mediated effects might have occurred due to cell death. Importantly, we have 344 

also demonstrated that cell death can occur in conjunction with autophagy in DHT-treated cells 345 

(161), suggesting that common signaling cascades, or crosstalk may exist between the two 346 

processes. Although dissecting this complexity is a challenge, using model systems that are 347 

deficient for apoptosis and autophagy machineries, such as caspase-3- and ATG-deficient mice, 348 

may be helpful. These studies may then provide avenues to identify molecules responsive to DHT 349 

that can affect both apoptosis and autophagy processes.  350 
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5. Perspectives and Significance 351 

As discussed above, autoimmune diseases are more prevalent in females than males and such a 352 

discrepancy also exists in the animal models, as shown with PLP 139-151-induced EAE in SJL 353 

mice (60, 138). Essentially, PLP-reactive T cells generated in males can induce EAE in males 354 

comparable to the EAE-phenotype in females induced by cells generated in the female SJL mice 355 

(138).  Conversely, cells from males can induce only mild disease in females (138), suggesting 356 

that the microenvironment of recipients may determine the EAE-outcomes.  By investigating the 357 

underlying mechanisms, we had previously noted that the EAE-resistant, male B10.S mice possess 358 

higher frequencies of Treg cells specific to PLP 139-151 than SJL mice, and depletion of Treg 359 

cells enabled B10.S mice to develop severe EAE (162, 163).  While, these observations provide a 360 

cellular basis for EAE-susceptibility and EAE-resistance phenotypes, male hormones appear to 361 

play a critical role in the suppression of EAE.  In support of this notion, a number of studies (124, 362 

125, 132, 136, 164-166) indicate therapeutic benefits of testosterone by ameliorating the EAE-363 

severity or clinical remissions in MS patients that are accompanied with increased gray matter 364 

volume, reduced Th1/Th17 inflammatory cytokines (IFN-γ, IL-2, and IL-17A), skewness of 365 

Th1/Th17:Treg ratio towards Tregs, shift of immune response towards Th2 type (IL-10), increased 366 

NK cell populations, and significant reductions in CNS infiltrations containing CD4 T cells (124, 367 

125, 132, 135, 164, 165, 167).  Based on our observations with DHT (161), we did not recognize 368 

the phenomenon of immune deviation from pro- to anti-inflammatory cytokine switch; rather DHT 369 

was found to suppress T cell responses regardless of their antigen-specificity that involve apoptosis 370 

and/or autophagy as the possible underlying mechanisms (161). Additionally, we performed a few 371 

pilot experiments and determined that estrogens mediate effects similar to DHT (data not shown). 372 

Whether all sex hormones mediate their functions through common pathways such as apoptosis 373 
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and autophagy, is currently unknown. Proving this concept to be true may then widen the 374 

applications of sex hormone-dependent molecules as drug targets for a range of diseases, including 375 

metabolic syndromes, aging and osteoporosis. Such discoveries also may potentially reduce the 376 

need to use small molecules like selective androgen receptor modulators. As a result, it may be 377 

possible to minimize side effects observed with sex hormones.   378 
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Figure legends: 379 

Figure 1. Sexual dimorphism with the disease occurrence, and its underlying potential 380 

immune mechanisms.   It is generally believed that males are more prone to infectious diseases 381 

than females, but the latter group have a preponderance to develop autoimmune diseases.   These 382 

phenotypes are shown with elbow arrows (favorable), and arrows with inhibitory lines 383 

(unfavorable). The hormonal environments in females (estrogens) and males (androgens) have 384 

been shown to influence both innate and adaptive immune cell functions.  Additionally, hormonal 385 

actions on immune cells in the respective sexes can potentially be influenced by transcriptome 386 

profiles in the sex chromosomes and epigenetic modifications.  Nonetheless, genetic susceptibility 387 

and exposure to environmental microbes, including alterations in the gut microbiota, if any are still 388 

the key players to trigger AIDs, but their outcomes can be modulated by sex hormones. 389 

 390 

Figure 2. Enumeration of PLP 139-151-specific CD4 T cells in the CNS infiltrates from EAE 391 

mice. Male and female SJL mice were immunized with PLP 139-151, and brains and spinal cords 392 

were harvested from EAE-mice that showed paralytic signs. Mononuclear cells isolated from these 393 

tissues were stained with PLP 139-151 (specific) or control (Theiler’s murine encephalomyelitis 394 

virus [TMEV] 70-86) dextramers and the dextramer+ CD4+ cells were then analyzed. 395 

Representative flow cytometric plots are shown (top panel).  By establishing in situ dextramer 396 

staining technique using LSCM, PLP 139-151-specific, CD4 T cells were analyzed in the brains 397 

harvested from male and female mice (bottom panel). CD4 T cells, green; dextramers, red; merged 398 

(circles, dext+ CD4+ T cells; insets represent enlarged views of dext+ CD4+ T cells). Original 399 

magnification 1000x; bar = 20 µm. Mean ± SEM values are shown (n=3). 400 
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Table 1: Therapeutic effects of estrogen and DHT and their derivatives in various autoimmune disease conditions 

 

Disease 

Estrogen/it’s derivatives DHT/its derivatives 

Humans Animal models Humans Animal models 

Multiple sclerosis Reduced Th1 response and  

TNF-α levels with a shift 

towards Th2 (IL-5, and IL-

10) and reduction in lesions 

in the brain and relapse rate 

(122, 123, 168) 

Enhanced B-reg and T-regs, higher 

serum IgG1 levels, reduced Th1, Th17 

response with a shift towards Th2, as 

evidenced by increased IL-5 (males) 

and IL-10 levels, with decreased IFN-γ, 

TNF-α, IL-2, IL-6, IL-17, and IL-23 

levels (130, 131, 169, 170) 

Reduced DTH response, 

increased NK cells, 

increased TGF-β1 and 

decreased IL-2 levels, 

decreased fatigue, increased 

gray matter volume and 

decreased CD4+ T cell 

infiltrates (124, 125, 171) 

Significant decrease in 

EAE severity, with 

skewness of Th1/Th17:T-

reg ratio towards T-reg, 

and a shift towards Th2 

response (increased IL-10) 

and decreased  IFN-γ level 

(132, 165-167, 171) 

Rheumatoid arthritis Patients with high serum E2 

showed reductions in VPS, 

AI (172) 

Significant reduction in alkaline 

phosphatase, TNF-α, IL-1β, IL-6 and 

anti-type-II collagen autoantibody 

levels, and reduced disease severity 

(173-175) 

Improved clinical signs 

with increased serum 

testosterone levels and 

CD8+ T cells, with 

decreased CD4+ : CD8+ 

ratio, reduction in tender 

joints (176, 177) 

Decreased autoantibody 

generation and joint 

inflammation, reduction in 

TNF-α and PGE-2 with 

reduced inflammatory 

infiltrates (173, 178, 179) 

Systemic lupus 

erythematosus 

No significant benefits were 

noted 

No significant benefits were noted Reduced disease severity, 

restoration of normal serum 

testosterone levels with 

reduced hematologic and 

serologic abnormalities 

(180-182) 

Reduced disease severity 

with increased survival rate 

with no autoantibody 

formation (183) 

Sjögrens syndrome No significant benefits were 

noted 

No significant benefits were noted, but 

has been shown to offer some level of  

protection against Sjögrens syndrome-

like disease 

Reduced ESR rates, 

increased testosterone 

levels offering disease 

protection, reduced dry-

eyes and dry-mouth 

symptoms (184, 185) 

Reduced lymphocyte 

infiltrations and reversal of 

autoimmune sequeale in 

lacrimal gland (186-188) 
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Hashimoto’s 

thyroiditis 

Not tested Not tested Inverse correlation between 

testosterone and thyroid 

autoimmunity, improved 

thyroid secretory function 

(189) 

Reduced disease incidence 

and pathology, and drastic 

reduction in thyroglobulin 

autoantibodies (190) 

Crohn’s disease Not tested Not tested Improved CDAI with 

reduced serum CRP, 

increased hemoglobin level, 

and reduced inflammation 

(191, 192) 

Not tested 

Psoriasis Not tested Not tested Normal serum testosterone 

levels, improved disease 

score, reduced CRP and 

improved obesity(193) 

Not tested 

Type-I diabetes Not tested Not tested Improved glycemic control 

with reduced fasting 

glucose and HbA1c (194) 

Not tested 

Graves’ disease Not tested Not tested Not tested Amelioration of disease 

severity with a shift from 

Th1 to Th2 response, 

reduction in IL-2,  IFN-γ 

and increase in IL-4, IL-

10, TGF-β, IL-35, and 

attenuation of thyroid 

oxidative injuries  (195, 

196) 
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VPS, visual analogue pain scale; AI, articular index; DTH; delayed type hypersensitivity; PGE-2, prostaglandin-E2; ESR, erythrocyte sedimentation 978 

rate; CDAI, crohn’s disease activity index; CRP, c-reactive protein; HbA1c, Hemoglobin A1c 979 

 980 

  981 

Autoimmune 

cholangitis 

Not tested Not tested Not tested Decreased pathology with 

lesser CD4+ liver-

infiltrating T cells, reduced 

expression of CXCL-9, 

CXCL-10, and IL-17 with 

increased serum 

testosterone concentration 

(197) 

Autoimmune orchitis Not tested Not tested Not tested Reduced disease severity, 

reduction in CD4+ T cells 

and accumulation of 

macrophages in testis, with 

significant increase in T-

regs. Substantial decrease 

in MCP-1, TNF-α, IL-6, 

IL-2, and  IFN-γ  (198) 
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 982 

 983 

Figure 1. Sexual dimorphism with the disease occurrence, and its underlying potential immune mechanisms.   It is generally 984 

believed that males are more prone to infectious diseases than females, but the latter group have a preponderance to develop autoimmune 985 
diseases.   These phenotypes are shown with elbow arrows (favorable), and arrows with inhibitory lines (unfavorable). The hormonal 986 

environments in females (estrogens) and males (androgens) have been shown to influence both innate and adaptive immune cell 987 

functions.  Additionally, hormonal actions on immune cells in the respective sexes can potentially be influenced by transcriptome 988 
profiles in the sex chromosomes and epigenetic modifications.  Nonetheless, genetic susceptibility and exposure to environmental 989 
microbes, including alterations in the gut microbiota, if any are still the key players to trigger AIDs, but their outcomes can be modulated 990 
by sex hormones. 991 

992 
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 993 

Figure 2. Enumeration of PLP 139-151-specific CD4 T cells in the CNS infiltrates from EAE mice. Male and female SJL mice 994 
were immunized with PLP 139-151, and brains and spinal cords were harvested from EAE-mice that showed paralytic signs. 995 
Mononuclear cells isolated from these tissues were stained with PLP 139-151 (specific) or control (Theiler’s murine encephalomyelitis 996 

virus [TMEV] 70-86) dextramers and the dextramer+ CD4+ cells were then analyzed. Representative flow cytometric plots are shown 997 
(top panel).  By establishing in situ dextramer staining technique using LSCM, PLP 139-151-specific, CD4 T cells were analyzed in the 998 
brains harvested from male and female mice (bottom panel). CD4 T cells, green; dextramers, red; merged (circles, dext+ CD4+ T cells; 999 

insets represent enlarged views of dext+ CD4+ T cells). Original magnification 1000x; bar = 20 µm. Mean ± SEM values are shown 1000 
(n=3). 1001 
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